合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
推荐新闻Info
-
> 单一表面活性剂在活性剂CMT焊接中的作用机理
> SAW作用下的液膜铺展实验:引入活性剂浓度对分离压和表面张力的影响
> 表面活性剂对微纳米气泡曝气中体积/液相传质系数、氧传质的影响
> 杨式方程、Wenzel 方程 Zisman 准则揭秘液体与固体表面之间的复杂关系
> 两亲性碳点CDS表面活性剂浓度、胶束对硅酸盐溶液润滑性能的影响(二)
> 两亲性碳点CDS表面活性剂浓度、胶束对硅酸盐溶液润滑性能的影响(一)
> 避免液滴表面张力影响吸附,研发可提升水雾降尘效果的公路施工用降尘设备
> 利用溶液的张力,设计一种用于精密分区腐蚀又不接触晶圆表面的隔离网筒
> 拉脱法测量:不同性能磁性液体的磁表面张力变化规律与影响因素(二)
> 拉脱法测量:不同性能磁性液体的磁表面张力变化规律与影响因素(一)
香豆素和磷脂混合物单分子层膜中的分子相互作用的界面性质——结论、致谢!
来源:上海91香蕉污污视频 浏览 814 次 发布时间:2021-11-01
四、结论
纯的稳定性、混溶性和地形特征 通过将 LangmuirBlo∆Gett 和 AFM 技术相关联来评估混合单层和混合单层。 更有效的热力学 由于 DPPG/CMR 混合单层,因此获得了关联 到有利的有吸引力的分子间相互作用。 差异 在磷脂的分子结构中解释了不同的 分子间相互作用的行为。 香豆素能够改变偶极矩、分子的堆积和 聚集体形成。
致谢
作者感谢 FACEPE 提供的支持, CNPq 和 INCT。 安德拉德和奥利维拉也感谢 CNPq 财政支持(赠款 302885/2015-3 和 302930/2015-9, 分别)。 Rocha 感谢 FACEPE 获得博士学位 奖学金。
参考
Andrade, C.A.S., Baszkin, A., Santos-Magalhães, N.S., Coelho, L.C.B.B., de Melo, C.P., 2005. Dielectric properties of Bauhinia monandra and Concanavalin A lectin monolayers, part I. J. Coll. Interf. Sci. 289 (2), 371–378. http://doi.org/10.1016/j. jcis.2005.01.076.
Andrade, C.A.S., Santos-Magalhães, N.S., de Melo, C.P., 2006. Thermodynamic characterization of the prevailing molecular interactions in mixed floating monolayers of phospholipids and usnic acid. J. Coll. Interf. Sci. 298 (1), 145–153. http://doi.org/10.1016/j.jcis.2005.11.066.
Baldyga, D.D., Dluhy, R.A., 1998. On the use of deuterated phospholipids for infrared spectroscopic studies of monomolecular films: a thermodynamic analysis of single and binary component phospholipid monolayers. Chem. Phys. Lipids 96 (1–2), 81–97. http://doi.org/10.1016/S0009-3084(98)00082-6.
Boggs, J.M., 1987. Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim. Biophys. Acta 906 (3), 353–404.
Borges, F., Roleira, F., Milhazes, N., Santana, L., Uriarte, E., 2005. Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Curr. Med. Chem. 12 (8), 887–916.
Bouffioux, O., Berquand, A., Eeman, M., Paquot, M., Dufrene, Y.F., Brasseur, R., Deleu, M., 2007. Molecular organization of surfactin-phospholipid monolayers: effect of phospholipid chain length and polar head. Biochim. Biophys. Acta 1768 (7), 1758–1768. http://doi.org/10.1016/j.bbamem.2007.04.015.
Chakraborty, S., Bhattacharjee, D., Hussain, S.A., 2012. Formation of nanoscale aggregates of a coumarin derivative in Langmuir-Blodgett film. Appl. Phys. A 111 (4). http://doi.org/10.1007/s00339-012-7338-z.
Chou, T.H., Chang, C.H., 2000. Thermodynamic characteristics of mixed DPPC/DHDP monolayers on water and phosphate buffer subphases. Langmuir 16 (7), 3385– 3390. 10.1021/la990581+. de Souza, S.M., Monache, F., Smania, A., 2005. Antibacterial activity of coumarins. Zeitschrift Fur Naturforschung C-a J. Biosesci. 60 (9–10), 693–700.
Dowhan, W., 1997. Molecular basis for membrane phospholipid diversity: why are there so many lipids? Ann. Rev. Biochem. 66, 199–232.
Dynarowicz-Latka, P., Dhanabalan, A., Oliveira, O.N., 2001. Modern physicochemical research on Langmuir monolayers. Adv. Colloid Interface Sci 91 (2), 221–293. http://doi.org/10.1016/S0001-8686(99)00034-2.
Findlay, E.J., Barton, P.G., 1978. Phase behavior of synthetic phosphatidylglycerols and binary mixtures with phosphatidylcholines in the presence and absence of calcium ions. Biochemistry 17 (12), 2400–2405.
Foldvari, M., Gesztes, A., Mezei, M., 1990. Dermal drug delivery by liposome encapsulation - clinical and electron-microscopic studies. J. Microencapsul. 7 (4), 479–489. http://doi.org/10.3109/02652049009040470.
Friedman, M., Henika, P.R., Mandrell, R.E., 2003. Antibacterial activities of phenolic benzaldehydes and benzoic acids against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 66 (10), 1811– 1821.
Fylaktakidou, K.C., Hadjipavlou-Litina, D.J., Litinas, K.E., Nicolaides, N., D., 2004. Natural and synthetic coumarin derivatives with anti-inflammatory/ antioxidant activities. Curr. Pharm. Des. 10 (30), 3813–3833.
Geraldo, V.P.N., Pavinatto, F.J., Nobre, T.M., Caseli, L., Oliveira Jr., O.N., 2013. Langmuir films containing ibuprofen and phospholipids. Chem. Phys. Lett. 559, 99–106. http://doi.org/10.1016/j.cplett.2012.12.064.
Gill, A.O., Holley, R.A., 2004. Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L-monocytogenes and Lactobacillus sakei. Appl. Environ. Microbiol. 70 (10), 5750–5755. http://doi. org/10.1128/Aem.70.10.5750-5755.2004.
Harlan, J.E., Yoon, H.S., Hajduk, P.J., Fesik, S.W., 1995. Structural characterization of the interaction between a pleckstrin homology domain and phosphatidylinositol 4,5-bisphosphate. Biochemistry 34 (31), 9859–9864.
Hazell, G., Gee, A.P., Arnold, T., Edler, K.J., Lewis, E., S., 2016. Langmuir monolayers composed of single and double tail sulfobetaine lipids. J. Coll. Interf. Sci. 474, 190–198. http://doi.org/10.1016/j.jcis.2016.04.020.
Helander, I.M., Alakomi, H.L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E.J., Wright, A., v., 1998. Characterization of the action of selected essential oil components on gram-negative bacteria. J. Agric. Food Chem. 46 (9), 3590–3595. 10.1021/jf980154m.
Hidalgo, A.A., Caetano, W., Tabak, M., N, O., O, J., 2004. Interaction of two phenothiazine derivatives with phospholipid monolayers. Biophys. Chem. 109 (1), 85–104. http://doi.org/10.1016/j.bpc.2003.10.020.
Hoult, J.R., Paya, M., 1996. Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential. Gen. Pharmacol. 27 (4), 713–722.
Jones, M.N., Chapman, D., 1996. Micelles, monolayers and biomembranes. Adv. Mater. 8 (4), 367. http://doi.org/10.1002/adma.19960080419.
Kostova, I., Raleva, S., Genova, P., Argirova, R., 2006. Structure-activity relationships of synthetic coumarins as HIV-1 inhibitors. Bioinorg. Chem. Appl. 68274. http://doi.org/10.1155/BCA/2006/68274.
Leekumjorn, S., Sum, A.K., 2006. Molecular simulation study of structural and dynamic properties of mixed DPPC/DPPE bilayers. Biophys. J. 90 (11), 3951– 3965. http://doi.org/10.1529/biophysj.105.076596.
Maget-Dana, R., 1999. The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochim. Biophys. Acta 1462 (1–2), 109– 140. http://doi.org/10.1016/S0005-2736(99)00203-5.
Mishra, P.A., Panigrahi, K.B.S., Nath, K.P., 2012. Investigation of Miscibility and Aggregate Formation in the Mixed Langmuir-Blodgett Films of 2- aminoanthracene by Surface Pressure and Spectroscopic Methods. Mol. Cryst. Liq. Cryst 557 (1). http://doi.org/10.1080/15421406.2011.642728.
Mozafari, M.R., Johnson, C., Hatziantoniou, S., Demetzos, C., 2008. Nanoliposomes and their applications in food nanotechnology. J. Liposome Res. 18 (4), 309–327. http://doi.org/10.1080/08982100802465941.
Musa, M.A., Cooperwood, J.S., Khan, M.O., 2008. A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr. Med. Chem. 15 (26), 2664–2679.
Musicki, B., Periers, A.M., Laurin, P., Ferroud, D., Benedetti, Y., Lachaud, S., Klich, M., 2000. Improved antibacterial activities of coumarin antibiotics bearing 5',5'- dialkylnoviosese: biological activity of RU79115. Bioorg. Med. Chem. Lett. 10 (15), 1695–1699.
Myers, D., 1999. Surfaces, interfaces, and colloids: principles and applications. Wiley-VCH, New York. Necas, D., K., P., Anderson, C., Gwyddion, 2008.
Nowotarska, S.W., Nowotarski, K.J., Friedman, M., Situ, C., 2014. Effect of structure on the interactions between five natural antimicrobial compounds and phospholipids of bacterial cell membrane on model monolayers. Molecules 19 (6), 7497–7515. http://doi.org/10.3390/molecules19067497.
Pan, J., Heberle, F.A., Tristram-Nagle, S., Szymanski, M., Koepfinger, M., Katsaras, J., Kucˇerka, N., 2012. Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and X-ray scattering. Biochim. Biophys. Acta 1818, 2135–2148. http://doi.org/10.1016/j. bbamem.2012.05.007.
Pattni, B.S., Chupin, V.V., Torchilin, V.P., 2015. New developments in liposomal drug delivery. Chem. Rev. 115 (19), 10938–10966. http://doi.org/10.1021/acs. chemrev.5b00046.
Rabtti, E.H.M.A., Natic, Maja M., Milojkovic-Opsenica, Dušanka, M., Trifkovic, Jelena Ð, Vuckovic, Ivan M., Vajs, Vlatka E., Tešic, Zˇivoslav Lj, 2012. RP TLC-based lipophilicity assessment of some natural and synthetic coumarins. J. Braz. Chem. Soc. 23, 522–530.
Rosler, A., Vandermeulen, G.W.M., Klok, H.A., 2012. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliv. Rev. 64, 270–279. http://doi.org/10.1016/j.addr.2012.09.026.
Sarpietro, M.G., Giuffrida, M.C., Ottimo, S., M., D., Castelli, F., 2011. evalsuation of the interaction of coumarins with biomembrane models studied by differential scanning calorimetry and Langmuir-Blodgett techniques. J. Nat. Prod. 74(4). doi: 10.1021/np100850u Szczes, A., Jurak, M., Chibowski, E., 2012. Stability of binary model membranesprediction of the liposome stability by the Langmuir monolayer study. J. Coll. Interf. Sci. 372, 212–216. http://doi.org/10.1016/j.jcis.2012.01.035.
Takao, Y., Yamauchi, H., Manosroi, J., Manosroi, A., Abe, M., 1995. Molecular interactions between lipids and some steroids. Langmuir 11 (3), 912–916. http://doi.org/10.1021/la00003a039.
Taylor, T.M., Davidson, P.M., Bruce, B.D., Weiss, J., 2005. Liposomal nanocapsules in food science and agriculture. Crit. Rev. Food Sci. Nutr 45 (7–8), 587–605. http://doi.org/10.1080/10408390591001135.
Torchilin, V.P., 2012. Multifunctional nanocarriers. Adv. Drug Deliv. Rev 64, 302– 315. http://doi.org/10.1016/j.addr.2012.09.031.
Uran, S.L., Jacobsen, A., Skotland, P.B., T., 2001. Analysis of phospholipid species in human blood using normal-phase liquid chromatography coupled with electrospray ionization ion-trap tandem mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 758 (2), 265–275.
Usui, T., 2006. Pharmaceutical prospects of phytoestrogens. Endocr. J. 53 (1), 7–20. Vollhardt, D., Fainerman, V.B., Siegel, S., 2000. Thermodynamic and textural characterization of DPPG phospholipid monolayers. J. Phys. Chem. B 104 (17), 4115–4121. http://doi.org/10.1021/jp992529s.
Wada, H., Murata, N., 2007. The essential role of phosphatidylglycerol in photosynthesis. Photosynthesis Res. 2, 205–215. http://doi.org/10.1007/ s11120-007-9203-z.
Yasuzawa, M.H., Fujiia, M.S., Kunugia, A., Nakaya, T., 2000. Preparation of glucose sensors using the Langmuir-Blodgett technique. Sens. Actuators B 65, 241–243.
Zaitsev, S.Y., Zubov, V.P., Mobius, D., 1995. Mixed monolayers of valinomycin and dipalmitoylphosphatidic acid. Colloids Surfaces Colloids Surf. A 94, 75–83.
Zaraiskaya, T.J., Jeffrey, K.R., 2005. Molecular dynamics simulations and 2H NMR study of the GalCer/DPPG lipid bilayer. Biophys. J. 6, 4017–4031.
香豆素和磷脂混合物单分子层膜中的分子相互作用的界面性质——摘要、简介
香豆素和磷脂混合物单分子层膜中的分子相互作用的界面性质——材料和方法